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ABSTRACT 

It is  shown that the Ehrenfest paradox arising 

from the rotating disk problem may be resolved w i t h -  

out resorting t o  a non-Euclidean geometry on the 

r o t a t i d  disk, and ~ t h o u t  postulating a radial con- 

t ract ion t o  compensate for  the circumferential 
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Lorentz contraction. 

INTRODUCTION 
I 

{,-- 
I 
l r  

Disk rotation has been sporadically studied ever since the Ehrenfest 

paradox ,wBs proposed i n  199.1 using a qualitative-argument i n  1911, 

Einsteinz concluded that the geometry of a rotating disk must be non- 

Euclidean as a result of circumf'erential shortening with no radial con- 

traction. 

- 

Lorentz3 took issue with this view, and in 1921 stated that he 
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had worked out the case of a thin, inf ini te ly  r igid disk and found that 

if v were th? velocity of the rim, then the radius would be shortened . 

"in the ratio of 1 t o  1 - p/8c2," and that the diek surface would,, there- 

fore, remain Euclidean. 

t h i s  resul t  and, hence, the Euclidean geometry of a rotating disk, i n  1924. 

Some 14 years l a t e r  Einstein and M e l d 5  reiterated the belief that disk 

geometry w a s  non-Euclidean, and i n  the next year, Levy' repeated t h i s  

Eddington ,? using a different method, confirmed 

view. 

study of disk rotation i n  which he claimd that the hypercurvature of the 

disk surface was given by 

Berenda7 supported Einstein's conjecture i n  1942 by an analytical 

-3( 8 / c 2 )  [ 1 - ( ifr2/c2) 1 -2 

In  developing t h i s  relation it was, however, necessary t o  ignore the 

vanishing of the Riemann-Christoffel tensor and t o  independently construct 

a so-calleil int r insic  geometry. Hil l :  i n  1942, assumed that r e l a t iv i s -  

t i c  rotation of itself could not l i m i t  the size of a rotating disk and 

employed a kinemtic argument t o  propose tha t  the Ehrenfest paradox might 
I 

best be resolved by a nonlinear speed-distance l a w ;  . that is, that the clas- 

s i c a l  definition of uniform rotational motion must be abandoned. Four 

. years la ter ,  Rosen' 'redefined the conditions f o r  r ig id  body rotation and 

affirmed tha t  "no r igid body would have a radius equal to, or exceeding, 

l/Q, but that there seems t o  be 

smaller radius could not rotate according t o  the' l inear  l a w  .'I 

spa t ia l  distance i n  a rotating system, he introduced a coordinate system 

similar t o  Berenda's, which required that the s u f a c e  of' a rotating disk 

o reason w h y  an idealized body with a 4 
In  defining 

be. non-Euclidean. 

I 

I 
t 
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A partial reconciliation of the viewpoints represented by Einstein 

and Eddington was presented i n  1952 by @ller,1° who noted that regardless 

of whether the disk surface was Euclidean or not, the relation 

p = 2m 

where p and a represent the stationary measurements of the disk c i r -  

cumPerence and radius, respectively, i s  not a rotational invariant. 

Instead, he suggested tha t  the relation should be 

' H i s  ensuing discussion of the geometry of the disk surface depended upon 

a metric tensor of the form used by Brenda, which Mjdller a lso specifi- 

cal ly  interpreted as implying a non-Euclidean geometry on the disk surface. 

In 1961 Weber11 repeated t h i s  line of reasoning and wrote that the sur- 

face of a rotating disk was non-Euclidean. - 
A l l  of the above investigators either implicitly or expl ic i t ly  used 

an N-transf ormi+on12 

z 1  = x1 cos 1bc4 + x2 sin Ibc4 

z2 = -XI sin 42x4 + x2 cos tbc4 

23 = x3 

t o  re la te  the uniformly ro t a t i  coordinates za t o  the stationary coor- 

dinates xi. 

Rosen, are  dependent upon a misinterpretation of this nonorthogonal trans- 

f o m t i o n  i n  the fourilhensional re la t iv i ty  space. 

+ 
Claims fo r  nonorchogonality, such as those of Brenda and 

0 

In the subsequent 
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development it i s  shown that the conclusions, but not necessar i lythe 

analyses, of,Eddington and Lorentz were substantially correct; that is, 

that *he geometry of the rotating disk is Euclidean. 

Space-Time 0-Transf ormations 

Transformation (2) demands that . 

:3 2 = (az1)2 + (az2)2 + (dz ) + 251(2' - 2 2 )  . 

(3)  

i n  the rotating space, while 

= (dx1l2 + + - c ~ ( & c * ) ~  (4) 
.represents arc length in  the stationary frame.13 Since it may be easily 

shown that the Riemann-Christoffel tensor vanishes i n  the za frame 

attached t o  the disk, it follows that the rotating space is  s t i l l  Euclidean. 

This observation is  unchanged if dx3 = d z 3  = 0, as i n  Berenda's analysis. 

Consequently, the off-diagonal terms i n  the rotating metric merely indi- 

cate use of a nonorthogonal coordinate system for the description of a 

Euclidean space. 

more than a classical  Newtonian N-transformationle from a stationary 

It has been shown15 that Eq. (2) is, i n  fact ,  nothing 

orthogonal system t o  a rotating nonorthogonal system. 

an orthogonai cylindrical coordina4e system 4 on the rotating disk may, 

Transformation t o  

i however, be accamplished with the -transformation 
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in which ti represents a stationary circular cylindrical coordinate 

system. Its inverse is 

gl = y l  

E2 = 7 ( f  + 

E3 = y' 

/ 

af) 

7 and a are defined 

E4 = r(sP + 

i n  which the transf onnation parameters terms of i n  

the angular velocity 0 and'the radial distance r =; E1 =; 9 according 

t o  

-. and . 
( 9 )  v = &  

where the notation r =; 9 =; g1 indicates tha t  r is a transformation 

parameter. 

, ,  

It takes the magnitude of y l J  or  el, but does not play the 

same role as ei ther  y l  or e l .  
Calculation of the metric of the space seen by a rotating observer 

depends upon the re1ationsl7 

2 2 i I 

where 
m i 

5 a ~ ~ / a y  and ~ 1 1  ~ 3 3  = 1, ~ 2 2  = r c,, = -c 

and where 1 

E," = 1 

E," = 7 

c, = 7n 

g: = 1 

E$ = yct 

5, = Y ' 2  4 
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Thus, we find that 
0 

/ 
bll = b33 = 1 

b22 = F ( 9  - c2u2) = I2 

b44 = -F(C' - V2) = -c2 

which proves that the space seen by the rotating observer is indeed 

Euclidean. Moreover, 
I 

bij = Cij. 

Although the transformation parameters contain factors proportional 

to y1 and y4, or kj1 and E4, they appear as constants in 

ap/ayi and ayi/akjn (10) 

because they have no geometrical significance, as was 

eters frequently appear whenever a transformation includes a change of 

units which is position dependent. 

cylindrical coordinate systems 

that 

of length, say meters, along a circular arc, according to 

Such param- 

For example, consider the two circular 
> 

x" and Za, both stationary in e, such 
is the usual radian measure of position and Z2 is a measure 

1 

z1 =: x1 

Z' = rx2 ] (11) 

z3 = x3 
where 

the choice units; that is, neitherlthe orthogonality of the coordinate lines 

nor the lines themselves, as shown in Fig. 1, is altered by the choice of 

units for'measuring distance along,these lines. 

r =; X' =; Z1.' Certainly the geometry of space is not affected by 
I 

1 
Regardless of the measuring 

! 

i. 

units chosen, the arc length ds is given by (ds)' = G,, d d = &p dZu dZ B , 
with 
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and 

Failure to recognize that r is a transformation parameter in Eq. (11) 

( i r e r j  the erroneow uaa of r = X1 - Z') will lead t o  an errweow 

> metric; namely 

which implies that the system has become nonorthogonal just as a conse- 

quence of the change of mepsuring units. This contradiction demonstrates 

that r must indeed be taken as a transformation parameter. 

Thus the unraveling of the Ehrenfest paradox and the resolution of 

the Einstein-Meld versus Lorentz-Eddington controversy is immediate. 

The surface of a rotating disk remains flat, as implied by the vanishing 

of the Riemann-Christoffel tensor under either Eq. (2) or  ( 5 ) )  and may 
I 

be simply described by Eq. (5) with x3 = Z3 = 0. The circumferential 

shortening with rotation does not imply a non-Euclidean geometry, but ' 

rather that the qubtity 2n should be replaced by 21~7, as noted earlier. 
a I 

1,) s I 

I . . .  
I 

I 

. .  
c 
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l8!T!he corresponding Newtonian 0-transf ormation is  

z1 = x1 cos cp + x2 si+ cp 

z2 = -2 s i n  cp + x2 cos cp 

i n  which cp = Ctt is  a transformtion parameter." Note that i n  R4 

Newtonian 0-transformations may correspond t o  translation, rotation, or 

a combination thereof, i n  a hyperplane normal t o  the time axis, while 

r e l a t iv i s t i c  0-transformations correspond t o  rotation i n  a hyperplane 

containing the kime axis. 

17The Einstein summation convection is  implied. 
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Fig .  1.- Coordinates used in Eq. (U). 
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